IBM y la Fundación Michael J. Fox usan Inteligencia Artificial para predecir la progresión de la enfermedad de Parkinson

.

En una nueva investigación publicada en Lancet Digital Health se describe un nuevo modelo de inteligencia artificial (IA) que agrupa los patrones de síntomas típicos de la enfermedad de Parkinson. El modelo también predice la progresión de estos síntomas en términos de tiempo y gravedad, aprendiendo de los datos longitudinales del paciente.

Seguramente sabrá que Michael J. Fox, el actor que personificó a Marty McFly en las icónicas películas “Back to the Future”, padece la enfermedad de Parkinson. El anuncio de su enfermedad en 1998 asombró al mundo, el actor reveló que lo habían diagnosticado siete años antes, a la edad de 29. Pocos tiempo después, en 2000, Fox lanzó la Fundación Michael J. Fox para la Investigación del Parkinson (MJFF, por sus siglas en inglés), cuyo objetivo es ayudar a buscar tratamientos y una cura para esta enfermedad, que se estima afecta a más de seis millones de personas en todo el mundo.

Desde entonces, el equipo de neurocientíficos y estrategas de MJFF trabaja codo a codo con investigadores de ciencia y tecnología, médicos, aliados de la industria y pacientes de todo el mundo para financiar las investigaciones más prometedoras, a fin de comprender y hallar mejores tratamientos para la enfermedad. En julio de 2018, la Fundación e IBM Research anunciaron una alianza única con el objetivo de aplicar el aprendizaje automático para promover mayores avances científicos.

Esta colaboración alcanzó un importante hito. En el último trabajo, “Descubrimiento de estados de enfermedad de Parkinson mediante aprendizaje automático y datos longitudinales”[1], publicado por el equipo de IBM junto con científicos de MJFF en Lancet Digital Health, se detalla un nuevo modelo de IA que agrupa los patrones de síntomas típicos de la enfermedad de Parkinson. El modelo también predice la progresión de estos síntomas en términos de tiempo y gravedad, aprendiendo de lo que se conoce como datos longitudinales del paciente, es decir, descripciones del estado clínico de un paciente recopiladas a lo largo del tiempo.

El objetivo es utilizar la IA para contribuir a la gestión y el diseño de ensayos clínicos. Estas metas son importantes porque, pese a la prevalencia de Parkinson, los pacientes experimentan una variedad única de síntomas, tanto motores como no motores.

Se espera que el uso de machine learning para aprender de grandes cantidades de datos de pacientes permita a los médicos e investigadores contar con una nueva herramienta para predecir mejor la progresión notoriamente variable de los síntomas en pacientes individuales de Parkinson. Asimismo, que ello permita gestionar y tratar la enfermedad de manera más efectiva, y que dé lugar a la posibilidad de identificar a los mejores candidatos para ensayos clínicos que sean más específicos y efectivos.

Poner la IA a trabajar

Los resultados son el siguiente paso de una investigación publicada anteriormente. Ese trabajo se enfocó en desarrollar un método para algunos de los desafíos únicos de las aplicaciones para la atención de la salud, entre ellas, permitir predicciones personalizadas[2] y dar cuenta de los efectos de los medicamentos en las mediciones de síntomas. Esta vez, se probaron los métodos de IA con datos de la Iniciativa de Marcadores de Progresión de Parkinson (PPMI, por sus siglas en inglés). La Fundación Michael J. Fox patrocina este estudio internacional y pone a disposición de los investigadores su conjunto de datos no identificable individualmente –uno de los más grandes del mundo referidos a la enfermedad de Parkinson-.

[1] Severson, K., Chahine, L., Smolensk, L., et al. Discovery of Parkinson’s disease states using machine learning and longitudinal data. Lancet Digital Health 2021. (2021).

[2] Severson, K., Chahine, L., Smolensky, L., et al. Personalized Input-Output Hidden Markov Models for Disease Progression Modeling. Proceedings of the 5th Machine Learning for Healthcare Conference, PMLR. 126:309-330. (2020).